Need Help With This Product?
Our specialists are here to help you find the best product for your application.
Cardiac Ryanodine Receptor (RYR2) is one of the most important proteins in cardiomyocyte physiology and calcium-induced calcium release. Mutations in RYR2 are a common cause of Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT). Clinically, CPVT is characterized by life-threatening arrhythmias which may present during exercise or stress.
A missense mutation in the gene encoding Cardiac Ryanodine Receptor (RYR2) gives rise to CPVT Type 1 resulting in a change of amino acid 2311 from Glutamic Acid-to-Aspartic Acid (E2311D). The pathobiology of this mutation remains generally poorly understood.
To enable investigation of the functional consequences of the mutation, the E2311D mutation was engineered in an otherwise apparently healthy, normal donor background, 01434. The use of genome engineering strategies to generate this mutation results in an isogenic pair that is vital for analysis.
iCell® Cardiomyocytes (E2311D) display abnormal cardiomyocyte function consistent with CPVT mutations associated with the cardiac ryanodine receptor.
Our specialists are here to help you find the best product for your application.
Our regular business hours are 9:00am to 5:00pm Central Time (USA)
Our specialists are here to help you find the best product for your application.
Our regular business hours are 9:00am to 5:00pm Central Time (USA)
Contractility was monitored by measuring impedance over time using the xCELLigence CardioECR (ACEA Biosciences). MyCell Cardiomyocytes (G490R) display reduced contraction amplitude and increased beat rate compared to the isogenic control. (DIV 14)
Figure 1: Contractility Measurements (Impedance)
Figure 2: Pharmacological Response to L-type Calcium Channel Agonist
Contractility and electrophysiology were monitored using the xCELLigence CardioECR (ACEA Biosciences). MyCell Cardiomyocytes (G490R) display reduced sensitivity to calcium channel agonist BayK 8466 compared to the isogenic control. (DIV 14, 30 minutes after treatment)
Contractility and electrophysiology were monitored using the xCELLigence CardioECR (ACEA Biosciences). MyCell Cardiomyocytes (G490R) display increased sensitivity to a calcium channel blocker of the dihydropyridine class compared to the isogenic control. (DIV 14, 30 minutes after treatment) Q = quiescence.
Figure 3: Pharmacological Response to L-type Calcium Channel Antagonist